Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype.
نویسندگان
چکیده
ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Atm-DeltaSRI, was designed as a model of one of the most common deletion mutations (7636del9) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-DeltaSRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-DeltaSRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-DeltaSRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-DeltaSRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-DeltaSRI animals. Thus, expression of mutant protein in Atm-DeltaSRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.
منابع مشابه
Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice.
Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated (Atm)-deficient ani...
متن کاملRedundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes.
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. ...
متن کاملAtm heterozygosity cooperates with loss of Brca1 to increase the severity of mammary gland cancer and reduce ductal branching.
The role of homozygous ataxia telangiectasia mutated (ATM) mutations in familial and sporadic forms of cancer is well established, but the contribution of ATM heterozygosity to mammary gland and other cancers has been controversial. To test the effect of Atm heterozygosity on mammary gland cancer, mice with complete loss of exon 11 of Brca1 specifically in mammary epithelium (Brca1-MG-Deltaex11...
متن کاملPerturbed hematopoiesis in mice lacking ATMIN.
The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic s...
متن کاملAtm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice.
Ataxia telangiectasia (AT) patients have inactivating mutations in both copies of the ATM gene. The ATM protein that the gene encodes is involved in DNA double-strand break (DSB) recognition; in its absence, p53 response to DSBs is delayed and reduced. In addition, AT patients have a high propensity for cancer, and cells from these patients show chromosomal instability. Here, using an in vivo m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 11 شماره
صفحات -
تاریخ انتشار 2001